Three bulbs of resistance 100. Ω, 200, Ω and 300 Ω are connected in parallel to a 120. V DC power supply. Draw the diagram and find thea) current in each bulb b) current drawn from the power supplyc) total power drawn power supply d) the net resistance of all bulbs

Answers

Answer 1

Let's use the formula for electric current.

[tex]I=\frac{V}{R}[/tex]

Where V is the power supply 120 V, and R is the resistance. Let's find the current in each bulb.

[tex]\begin{gathered} I=\frac{120V}{100\Omega}=1.20A \\ I=\frac{120V}{200\Omega}=0.6A \\ I=\frac{120V}{300\Omega}=0.4A \end{gathered}[/tex](a) The current in each bulb is 1.20A, 0.6A, and 0.4A, respectively.

(b) (c) The diagram of the circuit is

To find the net resistance, we use the following formula.

[tex]\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}[/tex]

Let's use the given magnitudes.

[tex]\begin{gathered} \frac{1}{R}=\frac{1}{100\Omega}+\frac{1}{200\Omega}+\frac{1}{300\Omega} \\ \frac{1}{R}=\frac{6+3+2}{600\Omega} \\ \frac{1}{R}=\frac{11}{600\Omega} \\ R=\frac{600}{11}\Omega \\ R\approx54.55\Omega \end{gathered}[/tex]Therefore, the net resistance of all bulbs is 54.55 ohms.
Three Bulbs Of Resistance 100. , 200, And 300 Are Connected In Parallel To A 120. V DC Power Supply.

Related Questions


A golf ball is initially on a tee when it is
struck by a golfer. The ball is given an
initial velocity of 50 m/s at a 37° angle. The
ball hits the side of a building that is 200
meters horizontally away from the golfer.
(a) What are the horizontal and vertical
components of the ball's initial
velocity?
(b) How much time elapses before the
ball strikes the side of the building?
(c) How far from the ground does the ball
strike the building?

Answers

Answer:

a.  

[tex]horizontal=39.9[/tex] m/s

[tex]vertical=30.1[/tex] m/s

b.

[tex]t=5.009[/tex]

c.

[tex]y=27.7[/tex]

Explanation:

Lets write down what we were given.

Angle = 37°

Initial Velocity = 50 m/s

Displacement in x direction = 200 m

Take note:

I am having some trouble with the theta symbol so let theta = [tex]N[/tex]

Lets do question C first.

We know that time is equal to  [tex]\frac{displacement}{velocity}[/tex]     aka [tex]t=\frac{x}{v}[/tex].

[tex]x=v[/tex]₀ₓ [tex]t[/tex]   ⇒  [tex]\frac{x}{v_{0x} }[/tex]   ⇒     [tex]\frac{x}{v_{0} *cos(N)}[/tex]

Now substitute the expression for t into the equation for the position.

[tex]y=(v_{0}sin(N))*(\frac{x}{v_{0}cos(N) })-\frac{1}{2}g(\frac{x}{v_{0}cos(N) }) ^{2}[/tex]

Rearranging terms, we have

[tex]y=(tan(N)*x)-[\frac{g}{2(v_{0}cos(N))^{2} } ]x^{2}[/tex]

Now lets substitute our numbers in for the variables. Then simplify.

[tex]y=(tan37*200)-[\frac{9.81}{2(50*cos37)^{2} } ]200^{2}[/tex]

[tex]y=150.7108-[\frac{9.81}{2(50*cos37)^{2} } ]200^{2}[/tex]

[tex]y=150.7108-[0.0030761]200^{2}[/tex]

[tex]y=150.7108-(0.0030761*40000)[/tex]

[tex]y=150.7108-123.0444[/tex]

[tex]y=27.7[/tex]

Now lets do question B.

Lets steal this from the last question.

We know that time is equal to  [tex]\frac{displacement}{velocity}[/tex]     aka [tex]t=\frac{x}{v}[/tex].

[tex]x=v[/tex]₀ₓ [tex]t[/tex]   ⇒  [tex]\frac{x}{v_{0x} }[/tex]   ⇒     [tex]\frac{x}{v_{0} *cos(N)}[/tex]

Now substitute the expression for t into the equation for the position.

[tex]y=(v_{0}sin(N))*(\frac{x}{v_{0}cos(N) })-\frac{1}{2}g(\frac{x}{v_{0}cos(N) }) ^{2}[/tex]

We can substitute [tex]t[/tex] for [tex]\frac{x}{v_{0}cos(N) }[/tex]

[tex]y=(v_{0}sin(N))*(t)-\frac{1}{2}g(t) ^{2}[/tex]

We can rewrite the equation as

[tex](v_{0}sin(N)(t)-\frac{1}{2}*(g(t)^{2})=y[/tex]

Now lets substitute our numbers in for the variables.

[tex](50sin(37)(t)-\frac{1}{2}*(9.81(t)^{2})=27.7[/tex]

After some painful algebra and factoring we get

[tex]30.09075115t-4.905t^{2}=27.6664[/tex]

Subtract [tex]27.6664[/tex] from both sides.

[tex]30.09075115t-4.905t^{2}-27.6664=0[/tex]

Use the quadratic formula to find the solutions.

[tex]\frac{-b+-\sqrt{b^{2}-4ac } }{2a}[/tex]

After some more painful algebra we get

[tex]t=5.00854263, 1.12616708[/tex]

1.126 does not make any sense so.

[tex]t=5.009[/tex]

Finally lets do question A.

Lets draw a triangle. We have the velocity which is the hypotenuse and we have the angle. From there we can solve for the opposite and adjacent sides.

Let [tex]A=horizontal[/tex]  and [tex]O=vertical[/tex]

[tex]cos(37)=\frac{A}{50}[/tex]

[tex]A=39.9[/tex]

[tex]sin37=\frac{O}{50}[/tex]

[tex]O=30.1[/tex]

For each letter, write a word to describe its role:A + B = C D x E = F

Answers

Answer:

A is an addend

B is an addend

C is a sum

D is a factor

E is a factor

F is a product

Explanations:Note:

Numbers(or characters) that are added together with the addition operator are called addends

The result of an addition operation is called sum

Numbers that are multiplied together are called factors

The result of a multiplication operator is called product

Considering the definitions above:

In A + B = C

A is an addend

B is an addend

C is a sum

In D x E = F

D is a factor

E is a factor

F is a product

What is the electric field amplitude of an electromagnetic wave whose magnetic field amplitude is 7.9 mT ?

Answers

Given:

The amplitude of the magnetic field of the electromagnetic wave is,

[tex]B_0=7.9\text{ mT}[/tex]

To find:

The amplitude of the electric field

Explanation:

Let, the amplitude of the electric field is

[tex]E_0[/tex]

As we know,

[tex]\begin{gathered} \frac{E_0}{B_0}=c \\ c=3\times10^8\text{ m/s} \end{gathered}[/tex]

Substituting the values we get,

[tex]\begin{gathered} \frac{E_0}{7.9\times10^{-3}}=3\times10^8 \\ E_0=3\times10^8\times7.9\times10^{-3} \\ E_0=2.37\times10^6\text{ N/C} \end{gathered}[/tex]

Hence, the amplitude of the electric field is,

[tex]2.37\times10^6\text{ N/C}[/tex]

How much power is used by a contact lens heating unit that draws 0.05 A of current from a 197 V line?

Answers

Given,

The current drawn by the contact lens heating unit, I=0.05 A

The supply voltage, V=197 V

The electric power is given by the product of the current drawn and the supply voltage.

Thus the power used by the given device is given by,

[tex]P=VI[/tex]

On substituting the known values,

[tex]\begin{gathered} P=197\times0.05 \\ =9.85\text{ W} \end{gathered}[/tex]

Thus the power used by the contact lens heating unit is 9.85 W

When the reflecting wave flips upside-down on a stretchedstring, which of the following is correct?a The stretched string is with a fixed boundaryb The stretched string is with a free boundaryсThe stretched string may have a fixed boundary ora free.d The given information is not enough.e None of the above is correct.

Answers

We are given a reflecting wave on a string. This can be exemplified in the following diagram:

Hunter pushed a couch across the room. He did 800 J of work in 20 seconds.The couch weighed 500 N. How much power did he have?A. 16,000 WB. 1.6WC. 800 WD. 40 W

Answers

Answer:

Power = 40 W

Option D

Explanation:

The workdone by the Hunter = 800 Joules

The weight of the couch = 500 N

Time, t = 20 seconds

Power = Workdone/Time

Power = 800/20

Power = 40 W

A hammer is used to hit a nail into a block of wood. The hammer hits the nail with a speed of 8.0 m/s and then stops. The hammer is in contact with the nail for 0.0015 s.,hammer has mass 0.15 kg.Calculate the average force between the hammer and the nail.

Answers

800 Newtons

Explanation

The average force is the force exerted by a body moving at a defined rate of speed (velocity) for a defined period of time.

the average force is given by:

[tex]F=ma[/tex]

and

[tex]a=\frac{\Delta v}{\Delta t}[/tex]

[tex]\begin{gathered} F_{average}=m\frac{\Delta v}{\Delta t} \\ where\text{ m is the mass of the objectt} \\ \Delta v\text{ is the change in velocity} \\ \Delta t=\text{ time} \end{gathered}[/tex]

Step 1

a) Let

[tex]\begin{gathered} m=0.0015\text{ kg} \\ \Delta v=0.0015s \\ \Delta v=8\text{ }\frac{m}{s} \end{gathered}[/tex]

now, replace

[tex]\begin{gathered} F=0.15\text{ kg}\frac{0-8\frac{m}{s}}{0.0015\text{ s}} \\ F=-800\text{ N} \end{gathered}[/tex]

the negative sign indicates the force is in the opposite way ( the force is exerted by the nail to the hammer), so the force is opposite to the direction of the movement

so, the answer is

800 Newtons

I hope this helps you

The crazed physic's student's lab partner decides to throw another pumpkin off the
roof with an initial velocity of 19.4 m/s. What is the velocity when the pumpkin
strikes the ground if it takes 3.2 seconds for it to fall?

Please Help :(

Answers

The velocity when the pumpkin strikes the ground if it takes 3.2 seconds for it to fall: 50.78 m/s

From the definition of velocity, we can find the velocity of a falling object is:

v = v₀ + gt

Here

v₀ - 19.4 m/s , t - 3.2  seconds , g - 9.80665 m/[tex]s^2\\[/tex]

v = 19.4 + (9.86 x 3.2)

v = 50.78 m/s

What is velocity?

Velocity and speed describe how quickly or slowly an object is moving. We frequently encounter circumstances when we must determine which of two or more moving objects is going faster. If the two are travelling on the same route in the same direction, it is simple to determine which is quicker. It is challenging to identify who is moving the fastest when their motion is in the other direction. The concept of velocity is useful in these circumstances. Learn about the definition of velocity in this article as well as the distinction between speed and velocity.

To learn  more about velocity, refer;

https://brainly.com/question/18084516

#SPJ13

Three vectors are shown in this figure. Their respective moduli are A = 4.00m.B = 3, 20m and C = 2.70mCalculate 2.00 A - B + 1.30 CExpress your answer according toa) Unit vectorsb) The modulus and orientation with respect to the positive part of the x-axis

Answers

Given that,

Modulus of vector A=4.00

The angle made by the vector A with the y axis, θ₁=33.0°

The modulus of vector B=3.20 m

The angle made by the vector B with the x-axis is θ₂=40.0+90.0=130°

The modulus of the vector C=2.70 m

The angle made by the vector C with x-axis θ₃=-90°

The x and y components of the vector can be written as

[tex]\begin{gathered} x=r\cos \theta \\ y=r\sin \theta \end{gathered}[/tex]

Where r is the magnitude (or modulus) of the vector and θ is the angle made by the vector.

Or a vector, in cartesian coordinates, can be written as,

[tex]R=r\cos \theta\hat{\text{i}}+r\sin \theta\hat{j}[/tex]

Therefore, vector A is cartesian coordinates is

[tex]\begin{gathered} \vec{A}=4.00\cos 33^{\circ}\hat{i}+4.00\sin 33.0^{\circ}\hat{j} \\ =3.35\hat{i}+2.18\hat{j} \end{gathered}[/tex]

And the vector B is

[tex]\begin{gathered} \vec{B}=3.20\cos (130^{\circ})\hat{i}+3.20\sin (130^{\circ})\hat{j} \\ =-2.06\hat{i}+2.45\hat{j} \end{gathered}[/tex]

And vector C is given by,

[tex]\begin{gathered} \vec{C}=2.70\cos (-90^{\circ})\hat{i}+2.70\sin (-90^{\circ})\hat{j} \\ =-2.7\hat{j} \end{gathered}[/tex]

The given equation is

[tex]2.00\vec{A}-\vec{B}+1.30\vec{C}[/tex]

Let this represents a vector V

On substituting the known values,

[tex]\begin{gathered} \vec{V}=2.00\vec{A}-\vec{B}+1.30\vec{C} \\ =2.00\times(3.35\hat{i}+2.18\hat{j})-(-2.06\hat{i}+2.45\hat{j)}+1.30(-2.7\hat{j}) \\ =8.76\hat{i}-1.6\hat{j} \end{gathered}[/tex]

(a) This is the representation with the unit vectors, where i and j are the unit vectors along the x-axis and y-axis respectively.

[tex]\vec{V}=8.76\hat{i}-1.6\hat{j}[/tex]

b) The modulus of any vector is the square root of the sum of the squares of its components.

That is, the magnitude of the vector V is

[tex]\begin{gathered} V=\sqrt[]{8.76^2+(-1.6)^2} \\ =8.90\text{ m} \end{gathered}[/tex]

The angle of this vector with the x-axis is given by

[tex]\begin{gathered} \phi=\tan ^{-1}(\frac{-1.6}{8.75}) \\ =-10.36^{\circ}^{} \end{gathered}[/tex]

The negative sign indicates that the vector is below the positive x-axis

Therefore the modulus of the resultant of the above equation is 8.90 m and its angle with the positive x-axis is -10.36°

Tsunami waves generally carry a mass (m) of 770 kg of water, travel at a velocity (v) of approximately 10 m/s and have a height (h) of 10 m at landfall. The colony structures can withstand a total energy (TE) 135,000 J before catastrophic damage occurs.ANSWER (a) AND (b)(a) Using your answers from #4 and #5 calculate the total energy (TE) of a tsunami wave. TE = KE + PE (b) Using your calculations and the provided data, explain to the colonizing council whether this crash site can be used to start a colony.

Answers

ANSWER:

(a)

Potential energy = 75460 J

Kinetic energy = 38500 J

Total energy = 113960 J

(b)

The site can be used to start a colony.

STEP-BY-STEP EXPLANATION:

Given:

Mass (m) = 770 kg

Velocity (v) = 10m/s

Height (h) = 10 m

(a)

We calculate in each case the kinetic and potential energy by means of their formulas

[tex]\begin{gathered} E_k=\frac{1}{2}m\cdot v^2=\frac{1}{2}\cdot770\cdot10^2=38500\text{ J} \\ E_p=m\cdot g\cdot h=770\cdot9.8\cdot10=75460\text{ J} \end{gathered}[/tex]

The total energy is the sum of both calculated energies:

[tex]\begin{gathered} E_T=38500+75460 \\ E_T=113960\text{ J} \end{gathered}[/tex]

(b)

Since the tsunami energy is less than the energy that can destroy the colony, then the site can support a permanent colony.

Which of the following is an example of Newton's third law of motion?A. A skydiver slows down when her parachute opens.B. A grocery cart moves forward when it is pushed.C. A cannon recoils backwards when it is fired.D. A rolling rock slows down due to friction.

Answers

Explanation:

The third law of Newton says that when an object exerts a force on a second object, the first object experiences an equal and opposite force that is exerted by the second object.

So, the example that shows this law is:

C. A cannon recoils backward when it is fired.

Because the cannon e

what do fusion and fission have in common

Answers

Answer:

Explanation:

they both involve nuclear reactions that produce energy, but the application are not the same  

How much work does Scott do to push a 74 kg sofa 2.1 m across the floor at a constant speed? The coefficient of kinetic friction between the sofa and the floor is 0.23.

Answers

Work does Scott do to push a 74 kg sofa 2.1 m across the floor at a constant speed. The coefficient of kinetic friction between the sofa and the floor is 0.23 is 349 Nm.

given that :

mass = 74 kg

distance d = 2.1 m

coefficient of kinetic friction , μk  = 0.23

work done is given as :

w = fd

f = μk m g

f = 0.23 × 74 × 9.8

f = 166 N

therefore ,

work = fd

w = 168 × 2.1

w = 349 Nm

Work does Scott do to push a 74 kg sofa 2.1 m across the floor at a constant speed. The coefficient of kinetic friction between the sofa and the floor is 0.23 is 349 Nm.

To learn more about Work here

https://brainly.com/question/13662169

#SPJ1

Which has more kinetic energy: a 0.0014-kg bullet traveling at 397 m/s or a 5.9 107-kg ocean liner traveling at 13 m/s (25 knots)?
the bullet has greater kinetic energy
the ocean liner has greater kinetic energy

Justify your answer.
Ek-bullet =
J
Ek-ocean liner =
J

Answers

Answer:

Ocean Liner because its mass is 5000 times more and the bullet's velocity squared is only 1600 times more. This means that the kinetic energy of the ocean liner will be roughly 3 times greater.

Explanation:

The kinetic energy of an object is dependent on mass and velocity.

E = ( 1 / 2 )mv²;

Energy is measured in Joules which is equal to kilogram metres squared per second squared.

1J = ( kg )( m² )( s⁻² ) or 1J = ( kg )( m² ) / ( s² )

We can substitute the mass and velocity directly into the equation because the question gives the values in metres and kilograms.

BULLET:

E = ( 1 / 2 )( 0.0014kg )( 397m / s )²;

E = ( 0.0007kg )( 157609m² )( s⁻² );

E = 110.3263kgm²s⁻²;

E = 110.3263J;

I will just skip some steps because you get the idea.

OCEAN LINER:

E = ( 1 / 2 )( 5.9107kg )( 13m / s )²;

E = 499.45415J;

A convex spherical mirror has a radius of curvatureof 9 40 cm. A) Calculate the location of the image formed by an 7.75mm tall object whose distance from the mirror is 17.5 cmCalculate the size of the imageC) Calculate the location of the image formed by an 7.75mm tall object whose distance from the mirror is 10.0cmE) Calculate the location of the image formed by an 7.75mm tall object whose distance from the mirror is 2.65cmG) Calculate the location of the image formed by an 7.75mm tall object whose distance from the mirror is 9.60m

Answers

0.We are asked to determine the location of an image formed by an 7.75mm tall object that is located a distance of 17.5 cm from a convex mirror.

First, we will calculate the focal length using the following formula:

[tex]f=-\frac{R}{2}[/tex]

Where:

[tex]\begin{gathered} f=\text{ focal length} \\ R=\text{ radius} \end{gathered}[/tex]

Substituting the values we get:

[tex]f=-\frac{9.40cm}{2}[/tex]

Solving the operations:

[tex]f=-4.7cm[/tex]

Now, we use the following formula:

[tex]\frac{1}{d_o}+\frac{1}{d_i}=\frac{1}{f}[/tex]

Where:

[tex]\begin{gathered} d_0=\text{ distance of the object} \\ d_i=\text{ distance of the image} \end{gathered}[/tex]

Now, we substitute the known values:

[tex]\frac{1}{17.5cm}+\frac{1}{d_i}=-\frac{1}{4.7cm}[/tex]

Now, we solve for the distance of the image. First, we subtract 1/17.5 from both sides:

[tex]\frac{1}{d_i}=-\frac{1}{4.7cm}-\frac{1}{17.5cm}[/tex]

Solving the operation:

[tex]\frac{1}{d_i}=-0.27\frac{1}{cm}[/tex]

Now, we invert both sides:

[tex]d_i=\frac{1}{-0.27}cm=-3.7cm[/tex]

Therefore. the location of the image is -3.7 centimeters.

The other parts are solved using the same procedure.

Part B. To calculate the size of the image we will use the following relationship:

[tex]\frac{h_i}{h_o}=-\frac{d_i}{d_0}[/tex]

Where:

[tex]h_i,h_0=\text{ height of the image and height of the object}[/tex]

Substituting we get:

[tex]\frac{h_i}{7.75mm}=-\frac{-3.7cm}{17.5cm}[/tex]

Solving the operations on the right side:

[tex]\frac{h_i}{7.75mm}=0.21[/tex]

Now, we multiply both sides by 7.75:

[tex]h_i=(7.75mm)(0.21)[/tex]

Solving the operations:

[tex]h_i=1.64mm[/tex]

Therefore, the height of the iamge is 1.64 mm.

A flywheel with a moment of inertia of 3.45 kg·m2is initially rotating. In order to stopits rotation, a braking torque of -9.40 N·m is applied to the flywheel. Calculate the initialangular speed of the flywheel if it makes 1 complete revolution from the time the brake isapplied until it comes to rest

Answers

Given data

*The given moment of inertia is I = 3.45 kg.m^2

*The given braking torque is T = -9.40 N.m

*The angular distance traveled is

[tex]\theta=(1\times2\pi)rad_{}[/tex]

*The final angular speed is

[tex]\omega=0\text{ rad/s}[/tex]

The angular acceleration of the flywheel is calculated by using the torque and moment of inertia relation as

[tex]\begin{gathered} T=I\alpha \\ \alpha=\frac{T}{I} \\ =\frac{-9.4}{3.45} \\ =-2.72rad/s^2 \end{gathered}[/tex]

The formula for the initial angular speed of the flywheel is given by the rotational equation of motion as

[tex]\omega^2-\omega^2_0=2a\theta[/tex]

Substitute the known values in the above expression as

[tex]\begin{gathered} (0)^2-\omega^2_0=2\times(-2.72)(2\pi) \\ \omega_0=\sqrt[]{2\times2.72\times2\pi} \\ =5.88\text{ rad/s} \end{gathered}[/tex]

Hence, the initial angular speed of the flywheel is 5.88 rad/s

Calculate the depth in the ocean at which thepressure is three times atmospheric pressure.Atmospheric pressure is 1.013 x 10^5 Pa. Theacceleration of gravity is 9.81 m/s^2and them/sdensity of sea water is 1025 kg/m^3Answer in units of m.

Answers

In order to determine the depth in the ocean, use the following equation:

[tex]h=\frac{P-P_o}{\rho g}[/tex]

h: depth

P: pressure = 3*Po

Po: atmospheric pressure = 1.013*10^5Pa

g: gravitational acceleration constant = 9.8m/s^2

p: density of water = 1025 kg/m^3

Replace the previoua values into the formula for h and simplify:

[tex]\begin{gathered} h=\frac{3P_o-P_o}{\rho g}=\frac{2P_o}{\rho g} \\ h=\frac{2(1.013\cdot10^5Pa)}{(1025\frac{kg}{m^3})(9.8\frac{m}{s^2})}\approx20.17m \end{gathered}[/tex]

Hence, the depth in the ocean is approximately 20.17m

A +10.31 nC charge is located at (0,8.47) cm and a -2.09 nC charge is located (3.91, 0) cm. Where would a -14.84 nC charge need to be located in order that the electric field at the origin be zero? Express your answer, in cm, as the magnitude of the distance of q3 from the origin.

Answers

To make the E-field at the origin become 0, we need to find the E-field at the origin before

E = kq/r^2

E1 = 12934 V/m

E2 = 12303.69 V/m

Etotal = 17851.34 V/m

17851.34 = kq/r^2

r = 8.6526 cm

Forces that are equal in magnitude
but opposite in direction will:

Answers

Answer:

The two forces equal in magnitude but acting opposite in direction on a body are called balanced forces

Explanation:

Philip jumps up with to a height of 3 m above the ground. What was Philip's initial velocity? round to the tenth.

Answers

The initial velocity of Philip was 7.66 m/s

Given data:

The vertical height is h=3 m.

Considering ground as the reference, then the initial potential energy of Philip is zero, i.e., PEi=0

The formula for the kinetic energy is given by,

[tex]KE_i=\frac{1}{2}mv^2[/tex]

Here, m is mass and v is the velocity.

After reaching the height of 3 m Philip comes to a stop. It means the final kinetic energy is zero, i.e. KEf=0.

The final potential energy is given by,

[tex]PE_f=mgh[/tex]

Here, g is the gravitational acceleration.

Applying the conservation of energy between initial position and final position.

[tex]\begin{gathered} KE_i+PE_i=KE_f+PE_f \\ \frac{1}{2}mv^2+0=0+mgh \\ v=\sqrt[]{2gh} \\ v=\sqrt[]{2\times9.8\times3} \\ v=7.66\text{ m/s} \end{gathered}[/tex]

Thus, the initial velocity of Philip was 7.66 m/s.

How much work is done when a 25.0 kg object is lifted 3.00 m?

Answers

The amount of work done is 735J.

We all know that the potential energy U is equal to the work we must do against the force for moving an object from the reference point to the exact position.  

The work done is equal to the potential energy through the work energy theorem.

 

     W = mgh

here,

m = mass

g = gravitational acceleration

h = height

W = work done

 

   On solving the above equation

W = 25x9.8x3

W = 75x9.8

W = 735 J

To know more about potential energy:  

https://brainly.com/question/3910603

How much power is created when you perform 55 Joule of work with a time 20 sec?

Answers

Answer:

2.75 watts

Explanation:

The power is equal to the work divided by time, so

P = W/t

Then, replacing W = 55 J and t = 20 sec, we get:

P = 55 J / 20 s = 2.75 Watts

Therefore, the power created is 2.75 watts

Identify the kinematic equation which relates the velocity and time.

Answers

The kinematic equation which relates velocity and time is

[tex]v=v_0+at[/tex]

As when the acceleratio

S=3-2t+3t^2
What is the instantaneous velocity and it’s acceleration at t=3s
At what time is the particle at rest

Answers

Answer:

Explanation:

Given:

X(t) = 3 - 2*t + 3*t²

t = 3 s

_______________

V(t) - ?

a(t) - ?

Speed is the first derivative of the coordinate, acceleration is the second.

1)

V(t) = X' =  (3 - 2*t + 3*t²)' = 0 - 2 +6*t = 6*t - 2

V(3) =  6*3 - 2 = 16 m/s

2)

a(t) = X'' = V' = (6*t - 2)' = 6 m/s²

a(3) = 6 m/s²

3)

The body will stop (V = 0 ) in (t) seconds:

V(t) = 6*t - 2

0 = 6*t - 2

6*t = 2

t = 2/6 = 1/3 ≈ 0,33 s

An object of mass m moves a circular path with a constant speed v. The centripetal force of the object is F. If the objects speed were halved in the mass was tripled, what would happen to the centripetal force?

Answers

An object of mass m moves a circular path with a constant speed v. The centripetal force of the object is F. If the object's speed were halved in the mass was tripled, then the centripetal force would be 0.75 times the original centripetal force.

What is a uniform circular motion?

It is defined as motion when the object is moving in a circle with a constant speed and its velocity is changing with every moment because of the change of direction but the speed of the object is constant in a uniform circular motion.

A mass m object travels in a circle at a constant speed v. The object's centripetal force is F. The centripetal force would be 0.75 times greater if the object's mass were tripled and its speed was cut in half.

Centripetal force = m × v²/r

                            =3m × (0.5v)² / r

                            = 0.75 mv² / r

Thus, the centripetal force would become 0.75 times the original centripetal force.

Learn more about uniform circular motion here, refer to the link ;

https://brainly.com/question/2285236

#SPJ1

Point charges create equipotential lines that are circular around the charge (in the plane of the paper). What is the potential energy, in nJ, of a 1 nC charge located 1.99 m from a 2 nC charge ?

Answers

The potential energy between two charges can be written as:

[tex]U_e=\frac{kq_1q_2}{r}[/tex]

In our case, it'll be equal to:

[tex]U_e=\frac{9*10^9*1*10^{-9}*2*10^{-9}}{1.99}=9.045nJ[/tex]

Then, our answer is PE=9.045nJ


A light, inextensible cord passes over alight, frictionless pulley with a radius of15 cm. It has a(n) 18 kg mass on the left and a(n) 2.6 kg mass on the right, both hanging freely. Initially their center of masses are a vertical distance 1.5 m apart.The acceleration of gravity is 9.8 m/s².

At what rate are the two masses accelerating when they pass each other answer in units of m/s^2 boo

Answers

Answer:

have you heard of quizlet

Explanation:

they are very helpful to these things

Use Newton’s Law of Universal Gravitation and Newton’s Second Law to
Find g = acceleration due to gravity
Show g is independent of mass

Answers

By equating the two forces, acceleration due to gravity g is obtained which is independent of mass

What is Newton’s Second Law ?

The law state that the rate of change of momentum is directly proportional to the force applied.

From Newton’s Second Law, Force F = mg. And from Newton’s Law of Universal Gravitation, Force F = GMm/r²

Where m is the mass of the satellite or the body revolving round the earth.

Equate the two forces.

mg = GMm/r²

The two m cancelled out leaving

g = GM/r²

Where

g = Acceleration due to gravityM = Mass of the earthG = Universal gravitational constantr = Distance between them.

Therefore, since the mass of the satellite m has cancelled out, acceleration due to gravity g is independent of mass.

Learn more about Newton's Laws here: https://brainly.com/question/25998091

#SPJ1

What conditions must be met in order for work to be done?

A. The applied force must make the object move.

B. The output force must be greater than the input force.

C. At least part of the applied force must be in the same direction as the movement of the object.

D. The work must be greater than the momentum.

Answers

At least part of the applied force must be in the same direction as the movement of the object must be met in order for work to be done.

What are the conditions to work?The following are the two prerequisites for working: To do the work, the body must be subjected to a force, or F 0. The body must move in the direction of the applied force, or S 0, as a result of the applied force.

There must be a force used. The displacement is the distance over which the force must act. The displacement must be a component of the force.

A legal term known as a condition precedent refers to an event that must occur before a certain contract is regarded as being in effect or before either party is obliged to fulfill any obligations.

Therefore, the correct answer is option C. At least part of the applied force must be in the same direction as the movement of the object.

To learn more about conditions to work refer to:

https://brainly.com/question/354034

#SPJ13

You push a 2.1 kg object on a table with 42N of force. The box then slowly skids to a stop over 2.2 m. What is the force of friction?

Answers

If you push a 2.1 kg object on a table with 42N of force. The box then slowly skids to a stop over 2.2 meters, then the force of the friction would be 42 Newtons as per the concept of limiting friction.

What is friction?

Friction is a type of force that resists or prevents the relative motion of two physical objects when their surfaces come in contact.

As given in the problem if push a 2.1 kg object on a table with 42N of force. The box then slowly skids to a stop over 2.2 m, then we have to find the force of the friction.

The force of the friction = The limiting friction force  

If you apply 42N of force to a 2.1-kilogram item on a table. According to the theory of limiting friction, when the box gently slides to a halt over a distance of 2.2 meters, the force of friction would be 42 Newtons.

 

Learn more about friction here, refer to the link ;

brainly.com/question/24186853

#SPJ1

Other Questions
Express 35 as a fraction of 95. Give your answer in its simplest form. What point of view is represented in video below?Little Rock community members who resisted the effort to desegregate their schoolsa historian who is analyzing early efforts to end school segregation in the Souththe first African American students to attend Little Rock Central High Schoolprevious members of President Eisenhower's department of education programs through which congress provides money to state and local governments on the condition that the funds be employed for purposes defined by the federal government are called Roman armies are victorious at the battle of zama in the second punic wars in 202 bce. Who did they defeat?. Why did the victory at Yorktown end the fighting? f(x) =-x + 2x + 6Find f(-7) The data below show the number of hits on a website per week over a random sample of five weeks. Compute the followingstatistics. A force of 30 N to the right is applied to an object. An opposite force of 20 N to the left is applied to the same object. What is the net force applied to the object?A. 10 N to the leftB. 50 N to the rightC. 50 N to the leftD. 10 N to the right Additional benefits such as health insurance, retirement benefits, or life insurance that are paid by the employer are called benefits. Will and Sarah are racing across the playground. Instead of running, they are hopping. During the race, they must both hop at the same time. In one hop, Will can travel 5 feet, and Sarah can travel 4 feet.The playground is 200 feet wide. Will wins the race after hopping 40 times. How far had Sarah hopped when Will finished the race?I know the answer i just need explanation. Read the passage from act v of hamlet. hamlet: to what base uses we may return, horatio! why may not imagination trace the noble dust of alexander, till he find it stopping a bung-hole? horatio: twere to consider too curiously, to consider so. one purpose of horatios line is to further the development of which theme? you can never ask too many questions. too much questioning is dangerous. it is important to question everything. be cautious of anyone who questions you. a motorboat travels 456 km in 8 hours going upstream and 783 km in 9 hours going downstream. what is the rate of the boat in still water and what is the rate of current? A red ballon is 40 feet above the ground and rising at 2 ft/s. At the same time, a blue balloon is at 60 feet above the ground and descending at 3 ft/s. What will the height of the balloons be when they are the same height above the ground 16 POINTS! What is an example of a Jewish legal idea that is found in society today?giving to charityfollowing the Torahhonoring the Sabbathproviding evidence for trials plot the graph f on the graphf(x)=|1/2x-2| A computer retail store has 10 personal computers in stock. A buyer wants to purchase 4of them. Unkown to either the retail store or the buyer, 4 of the computers in stock have defective hard drives. Assume that the computers are selected at random.A. In how many different ways can the 4 computers be chosen?Answer: 210B. What is the probability that exactly one of the computers will be defective?Answer: 2 is less than or equal to y Use (60 - 45) = 15 to find the exact value of cos 15.vaV2 + V6V-V6(b)(c)4(d)4+ V62 320000 in decimal form Write the number 0.2 in the form a over b using integers to show that it is a rational number